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Abstract

The Fast Fourier Transform (FFT) plays a key role in many areas of computational science

and engineering. Although most one-dimensional FFT problems can be solved entirely in main

memory, some important classes of applications require out-of-core techniques. For these, use of

parallel I/O systems can improve performance considerably. This paper shows how to perform

one-dimensional FFTs using a parallel disk system with independent disk accesses. We present

both analytical and experimental results for performing out-of-core FFTs in two ways: using

traditional virtual memory with demand paging, and using a provably asymptotically optimal

algorithm for the Parallel Disk Model (PDM) of Vitter and Shriver. When run on a DEC 2100

server with a large memory and eight parallel disks, the optimal algorithm for the PDM runs

up to 144.7 times faster than in-core methods under demand paging. Moreover, even including

I/O costs, the normalized times for the optimal PDM algorithm are competitive, or better than,

those for in-core methods even when they run entirely in memory.
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1 Introduction

Fourier analysis plays a pivotal role in many branches of science and engineering. The Fourier

transform's input is an N -vector of complex numbers, representing some discretized function. The

Fourier representation of this function is a sum of N weighted sine and cosine functions with

speci�c frequencies. Computing the coe�cients of the constituent functions yields a great deal of

information about the function. Well-known Fast Fourier Transform (FFT) techniques accomplish

the computation in �(N lgN) operations.

Since the modern discovery of the FFT by Cooley and Tukey in 1965 [CT65], a profusion of FFT

methods have been developed, primarily to optimize it for di�erent types of computer architectures

such as vector and parallel machines (e.g., see Van Loan [Van92]). The work we present here

continues in that vein, looking at ways of organizing an FFT computation to take advantage of

parallel I/O systems. Of course, such an endeavor is useful only if the input vector is too large to

�t in the main memory of a computer; in most uses of the FFT, the input vector will �t in core.

Some critical applications require extremely large one-dimensional FFTs, particularly when the

subject function exhibits critical phenomena at vastly di�erent time scales and high resolution is

required. One such application is seismic analysis [Cla85], where an out-of-core one-dimensional

FFT is necessary (as part of a higher dimensional FFT) even when the computer memory has

16 gigabytes of available RAM [Rut96]. Another application is in the area of radio astronomy.

The High-Speed Data Acquisition and Very Large FFTs Project at Caltech1 uses FFTs to sup-

port searching for fast (millisecond period) pulsars. The project currently requires FFTs with 10

gigapoints, and it desires FFTs with up to 64 gigapoints. Yet another application is for integer

multiplication of very large numbers [CF94], which is a key component in the most modern methods

of searching for Mersenne prime numbers. FFTs are used in many ways to manipulate data sets,

such as convolution/deconvolution, correlation/auto-correlation, �ltering, and power spectrum es-

timation [PFTV88]. Any time the data set is very large and accuracy is essential, very large FFTs

are required.

The contribution of the present paper is to present an out-of-core FFT algorithm that exploits

parallel I/O and to assess its performance. The algorithm is a variant of one that was sketched by

Vitter and Shriver [VS94], and which achieves the lower bound on complexity proven by Aggarwal

and Vitter [AV88]. In particular, we show how e�cient out-of-core permutation routines can be used

throughout the FFT computation. We assess performance by comparison with demand paging; we

show analytically and experimentally that well-known in-core FFT algorithms run slowly once the

data set size exceeds available in-core memory. Using only a single-disk system, we observe that

our out-of-core method runs over 46 times faster than demand paging; with eight disks we observe

up to two orders of magnitude improvement using our technique.

The remainder of this paper is organized as follows. Section 2 summarizes some FFT methods

for in-core computation, and Section 3 discusses published out-of-core FFT methods for single-disk

systems. Section 4 demonstrates why conventional demand-paged in-core FFT algorithms perform

badly when the problem size exceeds the physical memory. In Section 5, we de�ne the Parallel

Disk Model (PDM). Section 6 describes our out-of-core algorithm. Section 7 presents and analyzes

running times for our FFT implementation on two di�erent DEC Alpha-based uniprocessor systems.

Finally, we summarize in Section 8.

1See http://www.cacr.caltech.edu/SIO/APPL/phy02.html.
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2 In-core FFTs

This section reviews Fourier transforms and outlines some well-known FFT methods for in-core

computation. For further background on the FFT, see any of the texts [CLR90, Nus82, Van92].

Discrete Fourier transforms

Fourier transforms are based on complex roots of unity. The principal N th root of unity is a

complex number !N = e2�i=N , where i =
p
�1. For any real number u, eiu = cos(u) + i sin(u).

Given a vector a = (a0; a1; : : : ; aN�1), where N is a power of 2, the Discrete Fourier Transform

(DFT) is a vector y = (y0; y1; : : : ; yN�1) for which

yk =
N�1X
j=0

aj!
jk
N for k = 0; 1; : : : ; N � 1 : (1)

We also write y = DFTN (a).

Fast Fourier Transforms

Viewed merely as a linear system, �(N2) time is needed to compute vector y. The well-known Fast

Fourier Transform technique requires only �(N lgN) time, as follows. Splitting the summation in

equation (1) into its odd- and even-indexed terms, we have

yk =

N=2�1X
j=0

!
kj
N=2a2j + !kN

N=2�1X
j=0

!
kj
N=2a2j+1 :

Each of these sums is itself a DFT of a vector of length N=2. When 0 � k < N=2, it is easy to

see how to combine the results of these smaller DFTs. When N=2 � k < N , it is easy to show

that !
kj
N=2 = !

(k�N=2)j
N=2 and !kN = �!k�N=2N . Hence, we can compute y = DFTN(a) by the following

recursive method:

1. Split a into aeven = (a0; a2; : : : ; aN�2) and aodd = (a1; a3; : : : ; aN�1).

2. Recursively compute yeven = DFTN=2(a
even) and yodd = DFTN=2(a

odd).

3. For k = 0; 1; : : : ; N=2� 1, compute yk = yevenk + !kNy
odd
k and yk+N=2 = yevenk � !kNy

odd
k . The

factor !kN is often referred to as a twiddle factor.

By fully unrolling the recursion, we can view the FFT computation as Figure 1 shows. First,

the input vector undergoes a bit-reversal permutation, and then a butter
y graph of lgN stages is

computed. A bit-reversal permutation is a bijection in which the element whose index k in binary is

kN�1; kN�2; : : : ; k0 maps to the element whose index in binary is k0; k1; : : : ; kN�1. In the sth stage

of the butter
y graph, elements whose indices are 2s apart (after the bit-reversal permutation)

participate in a butter
y operation, as described in step 3 above. The butter
y operations in the

sth stage can be organized into N=2s groups of 2s operations each.
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Figure 1: The FFT computation after fully unrolling the recursion, shown here with N = 8. Inputs (a0; a1;

: : : ; aN�1) enter from the left and �rst undergo a bit-reversal permutation. Then lgN = 3 stages of butter
y

operations are performed, and the results (y0; y1; : : : ; yN�1) emerge from the right. This �gure is taken from

[CLR90, p. 796].

FFT algorithms

When the FFT is computed according to Figure 1 in a straightforward manner|left to right and

top to bottom|the result is the classic Cooley-Tukey FFT method [CT65]. Several other methods

have been developed to improve performance on vector machines and in memory hierarchies, by

avoiding the bit-reversal permutation to improve locality of reference.

Stockham's method [Van92, pp. 49{58] eliminates bit-reversal by permuting the N values before

each of the lgN stages of the butter
y network. Its memory requirement, however, is twice that

of the Cooley-Tukey method.

Another method, attributed by Bailey [Bai90] to P. Swarztrauber as a variation of an algo-

rithm by Gentleman and Sande, and also attributed to E. Granger by Brenner [Bre69], splits the

summation of equation (1) into
p
N summations each with

p
N terms. (Here we take N to be a

power of 4, but the method can be generalized). We split into
p
N DFTs rather than two; each

DFT is comprised of all terms whose indices are congruent modulo
p
N . The analog of a butter
y

operation adds
p
N terms (expressible as DFTs) that are computed by recursive calls to problems

of size
p
N . This, Swarztrauber's method, is given by the following steps, which operate in place:

1. Treating the vector a = (a0; a1; : : : ; aN�1) as a
p
N �

p
N matrix stored in row-major order,

transpose it so that elements whose original indices are congruent modulo
p
N appear in the

same row.

2. Compute the DFT of each
p
N -element row individually.

3. Scale the resulting matrix by multiplying the entry in row j and column k by !
jk
N .

4. Transpose the matrix.

5. Compute the DFT of each
p
N -element row individually.
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6. Transpose the matrix and interpret it once again as anN -element vector to produce the result

y = (y0; y1; : : : ; yN�1).

This method runs in time �(N lgN). Reliance on smaller DFTs improves locality in memory

hierarchies. Experiments reported in Section 4 show this method to be nearly twice as fast as

others on in-core computations.

3 Out-of-core FFTs

Here we brie
y survey published out-of-core, single-disk, one-dimensional FFT algorithms.

Note that an out-of-core method based on Swarztrauber's method is easy when M � N �M2,

because each
p
N -sized DFT �ts in memory. This relation between M and N is entirely reasonable

given contemporary memory sizes and prices. The method does require an out-of-core matrix-

transpose subroutine to accomplish steps 1, 4, and 6. Bailey recommends an algorithm by Fraser

[Fra76] for BPC (bit-permute/complement) permutations on one disk, whereas Brenner details a

transposition algorithm.

When the problem size just barely exceeds the memory size, Brenner suggests a method devel-

oped by W. Ryder. This method, which is a specialization of Swarztrauber's method, eliminates

the �rst two matrix transpositions. The cost of doing so, however, is that the computation time

contains a term proportional to N2=M , so that if N �M , the computation time is very high.

Sweet and Wilson [SW95] use an extension of Swarztrauber's method to perform FFTs even

when N > M2 on the CM-5 using a Scalable Disk Array (SDA) [TMC92], which appears to the

programmer as one large disk. The method used by Sweet and Wilson requires an out-of-core

bit-reversal permutation, and they use Fraser's algorithm.

The algorithm we present in Section 6 
eshes out the details of a sketch given by Vitter and

Shriver [VS94]. Because they focus on pebbling the butter
y graph, some essential steps are omitted

from their description (e.g., the implementation of an e�cient out-of-core bit-reverse permutation);

nevertheless their paper is properly viewed as the basis for our work.

4 Performance of FFTs with demand paging

In this section, we show that the in-core FFT methods described earlier perform poorly under

demand paging once the problem size exceeds the available memory. In particular, we show that

the number of page faults for the Cooley-Tukey bit-reversal computation is proportional to N

and that even under the best of conditions the butter
y steps for all methods su�er from a poor

computation-to-I/O ratio. We substantiate our conclusions with experimental results.

Analysis of bit reversal

The following pseudocode expresses an in-place bit-reversal permutation of N -element array A:

for j  0 to N � 1

do let j0 be the lgN -bit reversal of j

if j < j0

then exchange A[j]$ A[j0]

Theorem 1 Suppose that the in-place bit-reversal permutation code above is performed under de-

mand paging with least-recently-used page replacement. Suppose further that there are N = 2n
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elements in the array, the physical memory can hold M = 2m elements, and each page holds

B = 2b elements, where n, m, and b are positive integers, N � 2M , and N � 2B. Finally, assume

that the array A starts at a page boundary and that no pages of A are initially in memory. Then

the bit-reversal permutation induces at least N=4 page faults.

Proof: We will show that each element of the set F = fj : 0 < j < N=2 and j is oddg induces a
page fault. Noting that jF j = N=4 will then prove the theorem.

Observe that for each element j 2 F , we have j < j0, since j has a most signi�cant bit of 0 and

a least signi�cant bit of 1. Thus, the exchange of A[j] and A[j 0] will occur for each j 2 F . Let F 0

be the set of destination pages referenced when processing members of F .

We compute which page an element is on as follows. For a given n-bit index into A, the least

signi�cant b bits give the position on the page, and the most signi�cant n � b bits give the page

number. Thus, the elements of A that are destined for the same page p have the same value in

their least signi�cant source indices.

To determine whether a given reference to A[j0] causes a page fault, we compute the \stack

distance" for the page containing A[j 0]. The stack distance [MGST70] of a reference to page p

is one plus the number of uniquely di�erent pages referenced since the most recent reference to

page p. A reference to a page causes a page fault if and only if the stack distance of that reference

exceeds the number of pages that memory can hold, which is exactly M=B. By our assumption

that no pages of A are initially in memory, we consider the stack distance to the �rst reference to

a page of A to be in�nite.

Next we show that for each page p 2 F 0, as we progress through the values j = 0; 1; : : : ; N=2�1,
the stack distance between successive references to page p is greater than N=2B. Once a reference

is made to destination page p, another N=B � 1 values of j will be considered before the next

reference to page p. Of these, N=2B�1 are in F and thus cause a reference to a unique destination

page in F 0. The page containing index j is also referenced, and this page is not in F 0, and so at

least N=2B distinct pages are referenced. As long as no value j 2 F resides on the same page as its

destination index j0, the stack distance between successive references to page p is strictly greater

than N=2B. But because N � 2B, there are at least two pages in the array A, and because A also

starts at a page boundary, no element in the �rst N=2 positions resides on the same page as an

element in the last N=2 positions. Since each element j 2 F is in the �rst N=2 positions and maps

to an element in the last N=2 positions, we conclude that the stack distance is indeed greater than

N=2B.

Because N � 2M , we have that N=2B �M=B, and so each reference to a page of F 0 causes a

page fault. Since references to pages in F 0 are induced by source elements in F , we see that each

time a member of F is processed, a page fault ensues, which completes the proof.

The proof of Theorem 1 substantially undercounts page faults. A more extensive analysis using

similar ideas shows that the number of page faults is at least (N=2� 2
p
N)(1� 2=(N=M)2).

Analysis of butter
y stages

All of the FFT methods that we have discussed exhibit relatively good locality when executing

each butter
y stage. For both Cooley-Tukey and Stockham, each butter
y stage essentially sweeps

through all the data pages, exactly once, with no more than 2 data pages actively in use at a time.

Swarztrauber's method exhibits more complex behavior because of the matrix transposes, but its

constituent butter
ies act like the other two methods. The essential point to be noted is that during

a butter
y stage, each data point is updated once by a complex addition/subtraction (two 
oating-

point operations), and half the data points also involve a complex multiplication (six 
oating-point
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Method

Cooley-Tukey Stockham Swarztrauber

Problem size Seconds Normalized Seconds Normalized Seconds Normalized

N = 216 1.54558 1.47398 2.15616 2.05627 1.13762 1.08492

N = 217 3.36112 1.50843 4.64709 2.08556

N = 218 7.25278 1.53707 9.85693 2.08896 5.01269 1.06233

N = 219 15.5745 1.56347 20.9941 2.10753

N = 220 35.4236 1.68913 44.6760 2.13032 24.6568 1.17573

N = 221 75.1581 1.70658 972.035 22.0715

N = 222 11591.7 125.621 2022.26 21.9157 443.147 4.80248

N = 223 42553.5 220.555 4097.72 21.2385

N = 224 8746.85 21.7230 2226.75 5.53019

Table 1: Running times for the three in-core FFT methods on the workstation zayante, with 64 MB of

memory. For each method and problem size, we show the time in seconds and also the normalized time

(italics, in microseconds) which is the running time divided by N lgN .

operations). A typical 8 KB data page contains 512 points, and so it entails 2560 
oating-point

operations. The time required to fault in a data page is on the order of 10�2 seconds (most of which

is independent of the page size), but the time to process that page is about an order of magnitude

less. Even with much better locality than the bit-reversal computation, demand-paged FFT su�ers

greatly from waiting for I/O to complete. We can mitigate this bottleneck by either increasing the

size of block fetched per I/O, and/or by prefetching memory blocks. Our out-of-core technique

does both.

Experimental results

Here we present running times of the three demand-paged in-core FFT methods (Cooley-Tukey,

Stockham, and Swarztrauber). They were coded in C, compiled using gcc with O2 optimization,

and run on a DEC 3000 Alpha-based workstation running Digital UNIX V3.2C. The workstation,

named zayante, has a clock cycle of 175 MHz, 64 MB of memory, and a 512 MB virtual-address

space.

Table 1 gives running times. The Cooley-Tukey and Swarztrauber methods both use 16N

bytes; Stockham uses 32N and so experiences heavy paging one problem size earlier than the

others. Because our implementation of Swarztrauber's method requires N to be a power of 4,

timings for odd powers of 2 are omitted.

>From Table 1, we see the e�ects of demand paging. By avoiding bit-reversal, the Stockham

and Swarztrauber methods do not experience the degree of thrashing su�ered by Cooley-Tukey.

(In fact, we did not even run Cooley-Tukey for N = 224, anticipating a run time of about a day.)

Swarztrauber's method is notably faster in each case, probably due to its substantially better

locality in cache. Nevertheless, we shall see in Section 7 that our explicit out-of-core algorithm

runs faster than Swarztrauber's method on the same system for a problem size of N = 224.

5 The Parallel Disk Model

This section describes the Parallel Disk Model [VS94]. We shall use this model in Section 6 to

design an out-of-core FFT algorithm.
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D0 D1 D2 D3 D4 D5 D6 D7

stripe 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

stripe 1 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

stripe 2 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

stripe 3 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Figure 2: The layout of N = 64 records in a parallel disk system with B = 2 and D = 8. Each box

represents one block. The number of stripes is N=BD = 4. Numbers indicate record indices.

In the Parallel Disk Model, or PDM, N records are stored on D disks D0;D1; : : : ;DD�1, with

N=D records stored on each disk. For our purposes, a record is a complex number comprised of two

8-byte double-precision 
oats. The records on each disk are partitioned into blocks of B records

each.2 Any disk access transfers an entire block of records. Disk I/O transfers records between

the disks and an M -record random-access memory. Any set of M records is a memoryload. Each

parallel I/O operation transfers up to D blocks between the disks and memory, with at most one

block transferred per disk, for a total of up to BD records transferred. The most general type of

parallel I/O operation is independent I/O, in which the blocks accessed in a single parallel I/O may

be at any locations on their respective disks. A more restricted operation is striped I/O, in which

the blocks accessed in a given operation must be at the same location on each disk.

We assess an algorithm by the number of parallel I/O operations it requires. While this does

not account for unavoidable variation in disk-access times, the number of disk accesses can be

minimized by carefully designed algorithms.

We place some restrictions on the PDM parameters. We assume that B, D, M , and N are

exact powers of 2. For convenience, we de�ne b = lgB, m = lgM , and n = lgN . We assume that

BD �M in order to fully utilize disk bandwidth, and of course we assume that M < N .

The PDM lays out data on a parallel disk system as shown in Figure 2. A stripe consists of the

D blocks at the same location on all D disks. A record's index is an n-bit vector x with the least

signi�cant bit �rst: x = (x0; x1; : : : ; xn�1). Record indices vary most rapidly within a block, then

among disks, and �nally among stripes. The most signi�cant n �m bits of an index indicate its

memoryload number.

Since each parallel I/O operation accesses at most BD records, any algorithm that must access

all N records requires 
(N=BD) parallel I/Os, and so O(N=BD) parallel I/Os is the analogue of

linear time in sequential computing. The FFT algorithm we implemented has an I/O complexity of

�
�

N
BD

lgmin(B;N=B)
lg(M=B)

�
, which appears to be the analogue of the �(N lgN) bound seen for so many

sequential algorithms on the standard RAM model.

6 An explicit out-of-core FFT algorithm for the PDM

By taking full advantage of a parallel disk system, we can get considerably better out-of-core FFT

performance than we get by using just demand paging. This section presents an explicit out-of-core

FFT algorithm designed for the PDM. The key idea is to redraw the butter
y graph by inserting

permutations. We then recognize that bit-reversal and the added permutations belong to the larger

class of BMMC permutations. We use a prior out-of-core BMMC algorithm to produce an e�cient

out-of-core FFT.

2A block might consist of several sectors of a physical device or, in the case of RAID [CGK+88, Gib92, PGK88],

sectors from several physical devices.
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BMMC permutations on the PDM

A BMMC (bit-matrix-multiply/complement) permutation on N = 2n elements is speci�ed by an

n� n characteristic matrix H = (hij) whose entries are drawn from f0; 1g and is nonsingular (i.e.,

invertible) overGF (2).3 The speci�cation also includes a complement vector c = (c0; c1; : : : ; cn�1) of

length n. Treating each source index x as an n-bit vector, we perform matrix-vector multiplication

over GF (2) and then form the corresponding n-bit target index z by complementing some subset of

the resulting bits: z = H x� c. As long as the characteristic matrix H is nonsingular, the mapping

of source indices to target indices is one-to-one.

A very e�cient algorithm for BMMC permutations on the PDM appears in [CSW94]. This

algorithm requires at most 2N
BD

�l
rank


lg(M=B)

m
+ 2

�
parallel I/Os, where 
 is the lower left lg(N=B)�

lgB submatrix of the characteristic matrix, and the rank is computed over GF (2). (Note that

because of the dimensions of 
, its rank is at most lgmin(N=B;B).) This number of factors is

asymptotically optimal and is very close to the best known exact lower bound.

We shall use two types of BMMC permutations to perform the FFT. Both use a complement

vector that is all 0s.

Bit-reversal permutation: The characteristic matrix has 1s on the antidiagonal and 0s else-

where. The submatrix 
 has as much rank as possible, so that rank 
 = lgmin(B;N=B).

k-bit right-rotation: We rotate the bits of each index k bits to the right, wrapping around at

the rightmost position. The characteristic matrix is formed by taking the identity matrix and

rotating its columns k positions to the right, and rank
 � min(k; lgB; lg(N=B)).

Redrawing the butter
y

Figure 3 shows the structure of our algorithm. This redrawing of the butter
y was devised by

Snir [Sni81] and is implicitly used in the FFT algorithm of Vitter and Shriver [VS94]. Assume for

the moment that lgM divides lgN . As in the Cooley-Tukey method, we start with a bit-reversal

permutation. Then there are lgN= lgM superlevels, where each superlevel consists ofN=M separate

\mini-butter
ies" followed by a (lgM)-bit right-rotation permutation on the entire array.

Each mini-butter
y is a butter
y graph on M values, and hence it has depth lgM and a

sequential running time of �(M lgM). The size M of a mini-butter
y is chosen so that each

mini-butter
y is computed by reading in a memoryload, computing the mini-butter
y graph, and

writing out the memoryload.

Analysis

This FFT algorithm consists of one bit-reversal permutation followed by lgN= lgM superlevels.

As noted above, the bit-reversal permutation requires at most 2N
BD

�l
lgmin(B;N=B)

lg(M=B)

m
+ 2

�
parallel

I/Os. Each superlevel requires 2N=BD parallel I/Os to read and write all N=M mini-butter
ies

plus at most 2N
BD

�l
lgmin(B;M;N=B)

lg(M=B)

m
+ 2

�
parallel I/Os to perform the (lgM)-bit rotation permu-

tation. Since the PDM requires that BD � M and D � 1, we have B � M , and so the lgM

factor in the numerator drops out. Asymptotically, the number of parallel I/O operations is

�
�

N
BD

lgN
lgM

lgmin(B;N=B)
lg(M=B)

�
, which can be shown via simple manipulations to equal the lower bound

of 

�

N
BD

lgmin(B;N=B)
lg(M=B)

�
proven by Aggarwal and Vitter [AV88].

3Matrix multiplication over GF(2) is like standard matrix multiplication over the reals but with all arithmetic

performed modulo 2. Equivalently, multiplication is replaced by logical-and, and addition is replaced by exclusive-or.
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Figure 3: The structure of the out-of-core FFT algorithm for the PDM. After a bit-reversal permutation,

we perform lgN= lgM superlevels. Each superlevel consists of N=M mini-butter
ies on M values, followed

by a (lgM )-bit right-rotation permutation on the entire array.

Handling general values of N and M

If lgM does not tivite lgN , then we compensate in the last superlevel. Rather than computing

mini-butter
ies of depth lgM in the last superlevel, we compute mini-butter
ies of depth r =

(lgN) mod (lgM), which is the number of levels of the full butter
y graph not yet computed. We

can still read and write memoryloads of M values, but now each memoryload in the last superlevel

consists of M=2r mini-butter
ies.

Out-of-core Swarztrauber's method

If M < N � M2, we could use an explicit out-of-core version of Swarztrauber's method. The

matrix-transpose steps are BMMC permutations, since exchanging row and column numbers within

an index is a ((lgN)=2)-bit rotation permutation. Thus, there would be three BMMC permutations,

which is just as many as the our algorithm performs when M < N �M2. (Our algorithm has the

further advantage of working even when N > M2.)

Moreover, the BMMC permutations that an out-of-core Swarztrauber implementation would

perform are no faster than those of our algorithm. When done out-of-core, transposing a square

matrix takes just as long as a bit-reversal permutation or a (lgM)-bit right rotation. The in-core

portions of an out-of-core Swarztrauber algorithm would also have to perform in-core bit-reversal

permutations, and so they would be slower than the in-core portions of our algorithm. Consequently,

we did not implement an explicit out-of-core version of Swarztrauber's method.

Implementation notes

This section concludes with some notes on the implementation of our out-of-core FFT algorithm.

We start with the twiddle factors, which were omitted in the above description. The butter
y

operations in Figure 3 proceed in lgN levels from left to right, just as in Figure 1. If we number
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these levels from 1 to lgN , then all twiddle factors of the lth level are powers of !2l . We obtain

these powers of !2l e�ciently by directly computing the exponent of the twiddle factor in super-

level s, mini-butter
y q within the superlayer (starting from 0, and the range of q depends on

the superlayer), and the jth butter
y within a group of butter
ies as
j

qMs+1

MdlgN= lgMe

k
+ jM s. This

computation is easy to move into loops and avoids expensive sine and cosine calls.

The ViC* interface [CH96] provides the appearance of the PDM when performing parallel I/O

operations. The interface is portable, and it is implemented as a set of wrappers on top of an

existing serial or parallel �le system. Here, we used an implementation on top of a traditional

UNIX �le system (UFS), but with multiple disks.

The BMMC permutation subroutine is taken from the implementation in [CH96]. It calls the

ViC* interface to perform striped reads and independent writes. It is carefully optimized for both

in-core computation and I/O.

Finally, we implemented the FFT algorithm with both synchronous (i.e., blocking) and asyn-

chronous (non-blocking) I/O calls; the ViC* interface supports both. With asynchronous I/O, as

we compute the butter
ies of the qth memoryload, we simultaneously prefetch the data of the

(q + 1)st memoryload and write behind the computed data of the (q � 1)st memoryload. The

reduced latency does not come for free, however, as we must allocate prefetch and write-behind

bu�ers of the same size as the compute bu�er. Thus, the e�ective memory size, i.e., the value of M

used in the algorithm, is smaller with asynchronous I/O than with synchronous I/O. Because we

carve memory into three parts and M must be a power of 2, asynchronous I/O reduces the e�ective

memory size by a factor of 4. Context switching is an additional cost, as one kernel-level thread

serves each physical disk and is switched in to handle I/O initiation and completion. Nevertheless,

we shall see in Section 7 that asynchronous I/O is usually worthwhile.

7 Performance of the out-of-core FFT algorithm

This section presents timing results for the out-of-core FFT algorithm on two di�erent DEC Alpha

platforms. In all cases, block sizes were 216 bytes.

We start with a direct comparison of our algorithm and the in-core methods running with

demand paging on zayante. With our algorithm, we used D = 1 disk and varied the memory size

on zayante from 222 to 225. Using only one disk for the our algorithm makes for a fair comparison

to demand paging, since there is only one swap disk. Table 2 shows running times with both

synchronous and asynchronous I/O. In some cases, the asynchronous time exceeds the synchronous

time because, we believe, having one processor running both threads (main computation and disk

server) causes context switches during butter
y computations and BMMC permutations. Also, in

some cases using more memory does not help. Note, however, that at the problem sizes at which the

in-core algorithms encounter heavy paging|N � 222 for Cooley-Tukey and Swarztrauber|our out-

of-core algorithm is faster if it has enough memory to work with. (At N = 223, our algorithm with

32 MB of memory and asynchronous I/O is over 46 times faster than Cooley-Tukey.) Considering

the overhead due to the ViC* wrappers and UFS calls, it is impressive that our algorithm can run

faster than even Swarztrauber's method.

Table 3 shows running times on a di�erent system, named adams, which is a DEC 2100 server

with two 175-MHz Alpha processors, 320 MB of memory, and eight 2-GB disks for data (so that

D = 8). It has the same software environment as zayante, but with eight disks, its I/O bandwidth is

much higher. Compared to the in-core methods in Table 1 even when they run entirely in memory,

the normalized times (which do include I/O time) are at worst slightly higher and in some cases

even lower! In one case (N = 223), the running time on adams is 144.7 times lower than Cooley-
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Problem Memory size (bytes)

size 222 223 224 225

(points) sync async sync async sync async sync async

222 440.713 505.569 414.395 372.099 402.335 403.913 437.361 456.378

4.77610 5.47896 4.49088 4.03251 4.36019 4.37729 4.73977 4.94586

223 1242.05 1141.72 846.030 779.431 857.528 856.236 931.019 923.335

6.43756 5.91755 4.38498 4.03980 4.44458 4.43788 4.82548 4.78566

224 2479.13 2240.50 1939.60 2221.19 1699.27 1757.30 1785.00 1692.25

6.15699 5.56434 4.81705 5.51639 4.22018 4.36430 4.43310 4.20275

225 4851.86 4685.00 4827.49 4573.11 3412.08 3461.50 3539.99 3318.47

5.78387 5.58496 5.75482 5.45157 4.06752 4.12643 4.22000 3.95592

226 10714.9 11772.7 9558.68 8911.21 7689.57 8751.93 7495.07 7581.10

6.14094 6.74719 5.47829 5.10721 4.40706 5.01592 4.29559 4.34489

Table 2: Running times for the out-of-core algorithmon zayante with one disk, varying problem and memory

sizes, and both synchronous and asynchronous I/O. Times are in seconds, and in italics are the normalized

times (the running time divided by N lgN ) in microseconds.

Memory size (bytes)

Problem size 226 227

(points) sync async sync async

223 340.659 293.921

1.76564 1.52340

224 799.221 674.864 835.317 714.364

1.98489 1.67604 2.07453 1.77414

225 1718.09 1541.35 1712.90 1458.18

2.04812 1.83743 2.04194 1.73829

226 3500.04 3092.14 3496.10 3054.42

2.00595 1.77217 2.00369 1.75055

227 7232.63 6226.17 7105.92 6252.80

1.99583 1.71810 1.96086 1.72544

228 14671.7 12695.0 14243.6 12597.9

1.95201 1.68902 1.89506 1.67610

229 30319.8 26431.9 30281.2 26173.6

1.94741 1.69770 1.94494 1.68111

Table 3: Running times for the out-of-core algorithm on adams with 8 disks, varying problem and memory

sizes, and both synchronous and asynchronous I/O. Times are in seconds, and in italics are the normalized

times (the running time divided by N lgN ) in microseconds. With 227 bytes of memory, a 223-point FFT

�ts in memory, so this timing is omitted.
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Tukey on zayante. The operating system may choose to run a ready thread on either processor,

and so disk-server threads do not interfere with butter
y computations as much as on zayante.

Consequently, on adams it is always faster to use asynchronous I/O than to use synchronous I/O.

8 Conclusion

We have examined both analytically and experimentally two classes of methods for computing large

Fourier transforms. In-core FFT algorithms run slowly when they execute in a demand-paging

environment. Of the three that we examined, Swarztrauber's method is by far the fastest and has

the best locality of reference. The explicit out-of-core method that we developed for the PDM is

asymptotically optimal in this model, and it has good empirical performance. On a DEC 2100

server with two processors, large memory, and eight data disks, our algorithm's normalized time is

competitive with in-core methods, even when they run entirely in memory.

Although it uses both processors, our current DEC 2100 implementation is essentially a unipro-

cessor implementation. Our own breakdowns of running times on large problems show that com-

putation time is a bottleneck. We plan to investigate true parallel out-of-core algorithms, using

parallelized versions of the permutation methods described in this paper.
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